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The transverse curvature effects on axisymmetric free convection boundary layer 
f low of water at 4°C past a vertical cylinder were investigated. The governing 
equations for momentum and energy were solved numerically. Missing values of 
the velocity and thermal functions, which are proportional to the surface friction 
and the dimensionless heat transfer rate, were tabulated for a Prandtl number of 
11.4. It was observed that the heat transfer rate increses with increasing transverse 
curvature. 
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Introduction 
The presence of a buoyancy force is a requirement for the 
existence of a free convection flow. The buoyancy arises 
from density differences which are a consequence of the 
temperature gradients within the fluid. Buoyancy effects 
in natural convection flows have been extensively 
investigated I 5. In all these studies, the fluids considered 
were at normal temperature of 20°C. Under these 
conditions, the variation in density is linear with respect 
to temperature and is given by Ap=pfl (T,-T~). But 
when the water is at 4°C, its density is maximum and the 
variation of density can be adequately represented 6 by 
Ap=py (T.--T~) 2 where 7 = 8 x 1 0 - 6 ( ° C )  -2 .  The 
problem of free and combined convective flow of water at 
4°C over a semi-infinite flat plate has been studied 7-1 o. 

The present work was undertaken to study the 
influence of transverse curvature on laminar free 
convective boundary layer flow of water at 4°C. To this 
end, we singled out the simplest body of transverse 
curvature, namely, a thin circular cylinder. 

It is known that for small temperature variations, 
free convection in water at 4°C is much reduced from that 
at 20°C. The measurement of the terminal velocity of 
small particles, working at 4°C, may be of benefit in 
measuring molecular diffusivities in water and in heat and 
mass transfer experiments where one would like to 
suppress natural convection. The rates of heat transfer by 
free convection in water at 4°C may be reduced 
considerably from those at other temperatures, and this is 
an important consideration in certain freezing processes. 

Governing equations 
Consideration is given here to an axisymmetric, steady, 
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laminar, free convection boundary layer flow of water at 
4°C past a thin, vertical, circular cylinder. Fig 1 shows the 
flow model and the coordinate system used. Under the 
usual Boussinesq approximation, flow of water at 4°C 
may be expressed within boundary layer approximation 
as follows. 

Mass: 

~x (f~u)+~y (nV)= 0 (1) 

Momentum: 

/ Ou'~ "T 
U~xx+ V~-~-= a 0f~ (2) 

Energy: 

OT ~T 1 0 ( f 0 T )  
uf f~x+V~=ct~ f f  ~ ~ (3) 

The boundary conditions are given by 

Q=R: u =  V=0, T= T,,(-~ 4°C) 

f~---,~: u---*O, T--* T®(=4°C) (4) 

In the above equations, u and v are the velocity 
components in the x and r directions, respectively, T the 
temperature, 9 the gravitational acceleration, and ct the 
thermal diffusivity. 

Analysis 
The usual way of solving the equation of conservation of 
mass is to define a stream function ~b(x, r) such that 

1 0¢ 
12-- 

f~ 0Q 

v . . . .  (5) 
Q Ox 
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Gravity 
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Coordinate system and flow model 

X,  U 

We further define 

2L 1/4 
4 = ~ ( x )  

&") 2 R2 

~ - -  R2~ 

g~(Tw - T~)L 3 
C -  

4v 2 

O = 4vRC(~) s/4 f(4,  tl) 

T - T ®  
0 

Tw-T~ 
fc = (x/L) 

~- r 

y ,  V 

(6) 

After substituting the expressions in (6) into Eqs 
(2) and (3), we obtain 

(1 + ~t/)f'" + 3 i f " -  2(f ')  z + 0 2 + 

F f,,  , Ozf . . . .  Of] ,, x L - f  ~ - ) - I  ~ j = u  (7) 

1 4[ 1 0, ;,00 0:] 
~r(l+~q)O"+3fO'+ ~ ~ + 0 ' ~  = 0  (8) 

The transformed boundary conditions are given by 

f(~, 0)=f ' (¢,  0), 0(4, 0) = 1 

f '(~, ~ ) =  0(~, ~ ) = 0  (9) 

In the above equations, a prime denotes differentiation 
with respect to t/only. 

In order to solve the partial differential equations 
(7) and (8), we assume that 

f(4,  t/)= fo(t/) + ~f, (q) + ~2fz (t/) + . . .  (10) 

0(~,  ~]) = 00(/~) "4- 401 (~) "4- 4202 (t]) "31- . . .  (11) 

When Eqs (10) and (11) are substituted into Eqs (7) and 
(8), and terms involving equal powers of 4 equated to 
zero, one obtains the following set of ordinary differential 
equations governing the momentum and energy fields: 

fo" + 3fofo' - 2(fo)Z + Og = 0 (12) 

O; 4_ 3foO~ = 0 (13) 
P r  

f;" +~fo" + 3fof~' +4flfo'  + f o ' -  5fofo + 20o01 = 0  

" 0" O' 
O1 ~_~P_+~_+ 3 foO,o +4flO,o_O,fo=O 
er rr  rr  

f'ff + tlf'x" + 3fof~ + 4fl f'~ + 5f2f~ +f'~ 
t t i 2 

- 6 f o f ; - 3 ( f ~ )  +20001 + 0 ~ = 0  

(14) 

(15) 

(16) 

0'~ nv, v , O "  O' 
+-~-~+-~--+ 3fo0'2 + 4f, O'l + SfzO'o - O , f ;  - 202j; = 0 ~r l~r l~r 

(17) 

f~ '  + r/f~' " ~ . . . . . . .  + f a  + 3fof3 + 4fl f2  + 5faY1 - 7fof3 

-7 f~ j~  +6fJ3+20oO3+20102=O (18) 

Nota t ion  

C Dimensionless number 
C v Specific heat at constant pressure 
f Dependent variable representing the stream 

function 
g Gravitational acceleration 
Grx Local Grashof number 
k Thermal conductivity 
L Characteristic length 
Nu Local Nusselt number 
Pr Prandtl number 
q Heat flux 
r Radial coordinate 
R Radius of cylinder 
T Temperature 
u Velocity component in x direction 

/3 
X 

fl 
t/ 
0 

4 
P 
"C 
q, 

Velocity component in r direction 
Longitudinal coordinate 
Coefficient of thermal expansion 
Dimensionless coordinate 
Dimensionless temperature 
Kinematic viscosity 
Dimensionless coordinate 
Density of the fluid 
Shear stress 
Stream function 

Subscripts 

oo Ambient conditions 
w Wall conditions 
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v/ tt 0; +.0; 0' 
Pr Pr +Y~r+ 3f°O'3+4fxOi + 5f20i +6f30 '° -O1f;  

- 2 0 2 f ; - 3 0 3 f o = O  (19) 

f2' +,f;" + f;' + 3foK +4f.f'~ + s f j ; '  +6f3f; + Tf.fo' 
- 8 f o f ; -  8f~ f'3 - 4(f;)  2 + 2000,* + 20103 + (Oz) z = 0 

(20) 
O" 0 . . . .  
,,,* qu3 v3  3_O, +4f10,a+5f20i+6faO,l+7f,*O,o Pr + Pr + Pr + Jo ,* 

- 0 1 f ' 3 - 2 0 2 f ~ - 3 0 3 f ~ - a O , f o = O  (21) 

etc. 
The appropriate boundary conditions are given by 

fj(0) = f~(0) =fj(oo) = 0 for j/> 0 (22) 

0o(0 ) = 1, 0~(0) = 0 for j ~> 1 (23) 

0~(oo) = 0 for j ~> 0 

Eqs (12) to (21) were solved numerically on the 
computer using a fourth-order Runge-Kutta procedure 
with Pr as a parameter. Double precision arithmetic was 
used in all the computations. A step size of At/= 0.001 was 
selected. The missing wall values for the velocity and 
thermal functions were determined by shooting 
techniques. 

The wall shear stress may be written as 

z. = (~t ~-~)n = R (24) 

The local friction coefficient is then given by 

16C 1 . . 
Cl ~- 42 (2)3/,* ~ {f (4.0)} (25) 

The local heat transfer from the surface of the cylinder to 
the fluid is given by Fourier's law: 

_,d Q 
q* = \ c3~//n =. 

KC(rw - T ~ )  
= l (2)- 1/,* 0'(~, 0) (26) 

The local Nusselt number is given by 

Nux 
Grlx/4 = --(4) TM ~', 4"0'.(0) (27) 

n = O  

The velocity and temperature profiles are plotted in Figs 2 
and 3. Here the Prandtl number Pr has been taken as 11.4 
for water at 4°C. The results indicate that the maximum 
velocity decreases as 4 increases. This may be explained 
by the fact that smaller temperature differences give rise to 
smaller velocities. The velocity and temperature 
boundary layers flatten out less rapidly as 4 becomes 
larger. 

In order to facilitate the calculation of friction 
factor and the Nusselt number, we tabulated if(0) and 
0'i(0), as shown in Tables 1 and 2, for Pr= 11.4. The 
numerical results indicate that the friction factor (CI,) 
and the heat transfer (Nux) rate are augmented as the 
transverse curvature parameter increases. The surface 
friction coefficient and the wall heat transfer rate are 
usually of practical importance, and these quantities may 
be readily evaluated from the information supplied in 
Tables 1 and 2. 

C o n c l u d i n g  r e m a r k s  

The natural convective flow of water at 4°C past a thin 
vertical cylinder was studied. It was found that, for water 
at 4°C, the buoyancy effect is not a linear function of the 
temperature difference but is proportional to the square 
of the temperature difference. Numerical solutions were 
presented for the fluid flow and heat transfer 
characteristics. The missing wall values of the velocity 
and thermal functions were tabulated for a Prandtl 

0.8 

0.6 

0.4 

0.2 

0 I 
0 2.5 0 . 5  1 .0  1 .5  2.0 

1/ 

Distribution of  temperature profiles Fig 3 

A x i s y m m e t r i c  free c o n v e c t i o n  b o u n d a r y  layer f l o w  of  wa te r  at 4"C past s lender  bod ies  

Tab le  1 Va lues  of  f ; ' (0 )  f o r  P r = 1 1 . 4  

f~(0) = 0.30951 

f~' (0) = - 0.003 992 8 

f~(0) = 0 .0042267  

f~(0) = - 0.004 277 9 

f~'(0) = 0.005 947 9 
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T a b l e  2 V a l u e s  o f  0 ; (0 )  f o r  P r = 1 1 . 4  

0~(0) = - 1.005 76 

O; (0) = - 0.153 68 

0[(0) = - 0.020 560 

03(0 )= 0.011 333 

04(0) = - 0.009 752 6 

number of 11.4. This information would be useful for the 
evaluation of the surface friction factor as well as the heat 
transfer rate. The numerical results demonstrated that the 
heat transfer rate increases with increasing transverse 
curvature. 
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BOOK REVlIEW 

Fundamentals of Flow 
Measurement 

J. P. DeCarlo 

The International Society of America has published a 
number of ILM's (Independent Learning Modules) on 
control principles and techniques, fundamental 
instrumentation and unit process and unit operational 
control. The ILM's aim to be self-contained books which 
allow the reader to teach himself the subjects covered by 
the series of modules. 

Clearly the authors have to start with the 
assumption that their readers have a broad 
understanding of basic physics and engineering. There is 
thus no attempt to give detailed or mathematical 
expositions but it is hoped that sufficient explanation is 
there to allow readers to grasp the essential 
characteristics. 

Joseph DeCarlo achieves this goal excellently in 
this ILM, Fundaments of Flow Measurement, though 
inevitably in trying to cover such a wide field there have to 
be many areas where only the surface is scratched. The 
most serious gap is on the assessment of uncertainties for 
although several pages deal with the terminology of 
random and systematic uncertainties, etc, no reference is 
made to the ISO Standard 5168 and the examples are not 
adequate to enable the reader to carry out his own 
assessment. 

The format is good, with the book being divided 
into 12 units, each with a simple set of objectives and a 

summary and a series of exercises at the end. The first 
three units deal with the general background of 
classification and terminology and the next eight with the 
different groups of closed conduit and open channel 
devices and techniques. 

The final unit deals with flowmeter selection. This 
is a most difficult subject and in the example used to 
illustrate the method their are a number of instances 
where the choice is not as straightforward as the author 
would think. Nevertheless the author's choice of the 
phrase 'smiles per dollar' adds a moment of lightness to a 
very serious subject. 

Overall this book fulfils a real need for there are 
very few books which provide a general introduction to 
the whole subject. Although it is oriented to use in the 
USA, and the references are mainly American, this should 
not deter readers in other countries. An Appendix giving 
well-presented solutions to the exercises in each unit is 
admirable. 
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